
GTFS-realtime
introduction

Kurt Raschke

kurt@kurtraschke.com

Why do standards for
transit data matter?

• Standards serve as a force multiplier for civic software

• Producers and consumers benefit from standardized,
interoperable formats

• Agencies can use open standards to drive procurement

What is GTFS-realtime?

• Real-time complement to GTFS

• Open standard

• Extensible

• Synoptic

• Packaged in Protocol Buffers

What is GTFS-realtime not?

• GTFS-realtime is not for resource-constrained consumers
who only need data concerning a slice of the overall
transit network

• GTFS-realtime is not inherently a source of historical
data, unless it has been archived somewhere

Synoptic vs. piecewise
Synoptic feeds:

• communicate the entire
state of a transit network

• are efficient for system-to-
system communication
(e.g. trip planner, digital
signage headend)

Piecewise feeds:

• communicate the state of a
particular slice of the transit
network

• are ideal for individual
consumers (e.g. mobile
apps, individual digital signs)

• Easy to slice up a synoptic feed for piecewise clients;
harder (potentially much harder) to go the other way

Re-packaging GTFS-realtime
feeds for consumers

• OneBusAway and OpenTripPlanner
(both open source) can be used to
consume a GTFS-realtime feed and
provide a REST API for downstream
consumers

• Some agencies also provide
bespoke piecewise feeds (see, e.g.
https://www.mbta.com/developers/
v3-api)

https://www.mbta.com/developers/v3-api
https://www.mbta.com/developers/v3-api

What do GTFS-realtime
feeds contain?

• Trip Updates

• Vehicle Positions

• Alerts

What do GTFS-realtime
feeds contain?

• Trip Updates

• Vehicle Positions

• Alerts

entity {
 id: "40166022"
 trip_update {
 trip {
 trip_id: "40166022"
 start_date: "20190329"
 route_id: "80"
 }
 stop_time_update {
 stop_sequence: 30
 arrival {
 time: 1553909756
 }
 departure {
 time: 1553909756
 }
 stop_id: "2411"
 }
 stop_time_update {
 stop_sequence: 31
 arrival {
 time: 1553909816
 }
 departure {
 time: 1553909816
 }
 stop_id: "2412"
 }
 vehicle {
 id: "y1401"
 label: "1401"
 }
 }
}

What trip is this?

What vehicle is
serving this trip?

(Optional!)

When is the vehicle
arriving at and
departing from

this stop?

(Times are POSIX timestamps, that is,

seconds since midnight UTC, January 1, 1970)

What do GTFS-realtime
feeds contain?

• Trip Updates

• Vehicle Positions

• Alerts

entity {
 id: "5131858WKDY"
 trip_update {
 trip {
 trip_id: "5131858WKDY"
 }
 stop_time_update {
 stop_sequence: 10
 arrival {
 delay: 6
 time: 1553913876
 uncertainty: 30
 }
 departure {
 delay: 6
 time: 1553913909
 uncertainty: 30
 }
 stop_id: "EMBR"
 }
 stop_time_update {
 stop_sequence: 11
 arrival {
 delay: 0
 time: 1553913972
 uncertainty: 30
 }
 departure {
 delay: 0
 time: 1553914002
 uncertainty: 30
 }
 stop_id: "MONT"
 }
 }
}

Arrival and departure times
can also be expressed

relative to the schedule,
and can include uncertainty.

What do GTFS-realtime
feeds contain?

• Trip Updates

• Vehicle Positions

• Alerts

entity {
 id: "y1642"
 vehicle {
 trip {
 trip_id: "39996581"
 schedule_relationship: SCHEDULED
 route_id: "34E"
 }
 position {
 latitude: 42.30271
 longitude: -71.109924
 bearing: 0.0
 }
 current_status: IN_TRANSIT_TO
 timestamp: 1553913346
 vehicle {
 id: "y1642"
 label: "1642"
 }
 }
}

Where is the vehicle?

What trip is the
vehicle operating?

(Optional!)

What is the
vehicle’s identity?

What do GTFS-realtime
feeds contain?

• Trip Updates

• Vehicle Positions

• Alerts

entity {
 id: "302361"
 alert {
 active_period {
 start: 1554712200
 end: 1554877800
 }
 informed_entity {
 stop_id: "70087"
 }
 informed_entity {
 stop_id: "70088"
 }
 informed_entity {
 stop_id: "door-shmnl-sydney"
 }
 cause: MAINTENANCE
 effect: OTHER_EFFECT
 header_text {
 translation {
 text: "Savin Hill Elevator 947 (Sydney Street to unpaid lobby)
unavailable from Mon Apr 8 through Tue Apr 9 due to maintenance"
 language: "en"
 }
 }
 description_text {
 translation {
 text: "To access the station, please use the main entrance on
Savin Hill Avenue by exiting the parking lot and turning right to go up
the hill to the main entrance. Please contact a station personnel for
assistance."
 language: "en"
 }
 }
 }
}

When is this alert active?

Who is affected
by this alert?

What do GTFS-realtime
feeds contain?

• Trip Updates

• Vehicle Positions

• Alerts

entity {
 id: "302490"
 alert {
 active_period {
 start: 1553907174
 end: 1553921361
 }
 informed_entity {
 agency_id: "1"
 route_id: "426"
 route_type: 3
 }
 cause: POLICE_ACTIVITY
 effect: OTHER_EFFECT
 header_text {
 translation {
 text: "Route 426 experiencing delays of up to 25 minutes due to
police action"
 language: "en"
 }
 }
 description_text {
 translation {
 text: ""
 language: "en"
 }
 }
 }
}

Protocol Buffers?

Protocol Buffers
• Binary serialization format designed by Google

• More efficient than XML or JSON

• Google-maintained libraries for Java, Python, C++;
community-maintained libraries for many other languages

• Not directly human-readable, but debugging tools exist

• Pre-built GTFS-realtime bindings for .NET, Java,
JavaScript, PHP, Python, Ruby, and Go:  
https://github.com/google/gtfs-realtime-bindings

https://github.com/google/gtfs-realtime-bindings

Use tools!
https://github.com/kurtraschke/gtfs-rt-dump

https://github.com/laidig/gtfs-rt-printer

https://github.com/kurtraschke/gtfs-rt-dump
https://github.com/laidig/gtfs-rt-printer

Producing GTFS-realtime

• Native feeds are best, but…

• Converting legacy APIs to GTFS-realtime is not
impossible (and can be fairly easy in some cases) 
https://kurtraschke.com/2015/01/legacy-avl-export

• What if you only have vehicle positions? Use a prediction
engine! 
https://github.com/TheTransitClock/transitime

https://kurtraschke.com/2015/01/legacy-avl-export
https://github.com/TheTransitClock/transitime

Consuming GTFS-realtime:
passenger information

• Consuming data directly on a resource-limited endpoint 
(mobile device, Raspberry Pi driving a digital sign, etc.)? 
Consider using a piecewise API, whether provided by the
transit agency, or filtered through OneBusAway or
OpenTripPlanner.

• Or, build your own backend…

Consuming GTFS-realtime:
research and analysis

• Tools exist to automatically consume a GTFS-realtime
feed and store its contents in a database: 
https://github.com/CUTR-at-USF/gtfsrdb

• How to keep an archiver running? Consider the free tier
many cloud services offer, or a Raspberry Pi hiding under
your desk…

• Someone may already be archiving data!

https://github.com/CUTR-at-USF/gtfsrdb

Questions?

