Traction motor, HVAC unit, AVL system?

If a transit agency runs its own motor shop for rebuilding traction motors, runs its own electronics shop for performing component-level repair of circuit boards, runs its own axle shop for rebuilding axles, why shouldn’t it be able to do the same for the software which is just as vital to everyday operation as axles and traction motors?

I recently came across a very interesting paper describing the successes of SEPTA’s Woodland Electronic Repair Shop. At SEPTA, the justification for in-house electronics repair is twofold: many components which come into the shop are not actually defective, and had they been sent to an outside shop for repair, time and money would have been wasted only for the outside shop to return the same “no trouble found” verdict, and, secondly, sending equipment to an outside shop is expensive—by SEPTA’s analysis, more than double the cost of operating an in-house electronics shop.

Transit agencies may not think of themselves as being technology-oriented, but the reality is that software systems are at the heart of so many things transit agencies do—from scheduling to passenger information to signals and communications. Agencies almost universally rely on vendor support for large software packages that perform a wide range of functions: scheduling, trip planning, real-time passenger information, and even safety-critical tasks in signalling and communications.

Yet in comparison to the nuts and bolts which keep the a transit system moving, most transit agencies have shockingly little control over their vital software. Being closed-source and proprietary, the agency is unable to develop its own bug fixes, patches, and new features, and may not even be able to export data in an open format. By controlling the availability of support and new features, the vendor dictates when the agency upgrades—and by using proprietary data formats and interfaces, the vendor all but guarantees that the agency will return to them instead of shopping around. This is the very same risk that SEPTA’s electronics shop seeks to mitigate:

At some point the vendor will no longer support their particular system and since you have always relied upon them for their parts you will have no choice but to go out for bid to get a new system or an alternately designed part to perform the same function.

When procuring new equipment, SEPTA demands access to schematics and test equipment, so that their repair shop can do its work. Without this access, the results are predictably poor. SEPTA found that costs for one class of parts had increased 94% over two years—an “astronomical” price increase at an agency used to inexpensive in-house repair. The explanation, from SEPTA’s engineering department, is depressing:

These are so expensive because SEPTA has no alternative but to purchase these parts from the OEM.

This is why our equipment specifications have a requirement that the Vendor provide SEPTA with all test equipment, documentation and training to allow us to repair the circuit boards in our electronic repair shop at Woodland. The CBTC project did not have a specification from Engineering, but rather was supplied for liquidated damages from the M4 program. It was understood from the beginning that SEPTA would not have the capability to repair the circuit boards.

The complexity and safety aspect of these boards prevents SEPTA from creating drawings and specifications that would allow an alternate supplier to produce these boards.

So, what is the parallel for a software project? Where an electronics shop has schematics, where a mechanical shop has blueprints, a software shop has source code and supporting tools. When a transit agency has access to the source code for a software system, they can perform their own in-house work on the system, on their own schedule, and with their own staff. New features are developed to meet the agency’s needs, not according to a vendor’s whims. Even if the agency elects to bring in contracted support to develop bug fixes or new features, they retain complete control over the process—and, more importantly, they own the end product.

Transit agencies may feel ill-at-ease at the prospect of getting into the business of software development, but the reality is that by bringing software skills in-house, they can realize the same gains as when they bring mechanical and electronic repair and overhaul in-house. In fact, the potential gains are even greater for software, when agencies use open-source software and actively participate in the surrounding community. Many of the fundamental problems of mass transit are the same from agency to agency, and software developed to solve a problem at one agency is very likely to be usable (at least in part) at other agencies.